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Kinetic theory of Jeans instability
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Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The
initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral
conserving the number of particles, is solved. Dispersion relation is obtained and analyzed. New modes are
found. Collisions are shown not to affect the Jeans instability criterion. Although the instability growth rate
diminishes, the collisions they cannot quench the instability. However, the oscillation spectrum is modified
significantly: even in the neighborhood of the threshold frequesc® (separating stable and unstable mgdes
the spectrum of oscillations can strongly depend on the collision frequency. Propagatiey than aperiodjc
modes are also found. These modes, however, are strongly damped.
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I. INTRODUCTION the collisionless Boltzmann-Vlasov equation by using the

In his letter to Richard Bentley, Isaac Newtar692 first Landau bypass rule. Kinetic treatment of the Jeans instability

suggested that self-gravity in infinite universe would lead o> discussed in detail in Re{/]. The gravitating charged

the observed mass distributiqat]. Jeans(1902) gave the coII|S|0|nIess qsst, (Ijn'WE{IChSthe Jeans instability arises, was
first quantitative description of fragmentation of matter duere(:lenty const I‘Ia reb |Ir) efe). Ref. [7]) that the J
to self-gravity[2]. He has shown that a self-gravitating infi- tis generally believede.g., Ref.[7]) that the Jeans

nite uniform qas at rest should be unstable against Smaﬂwodel suffers from basic inconsistency as the equilibrium
m g . : € agans state in this model does not obey the Poisson equation. In-
perturbations proportional to epigk -r —wt)]. Linearization

of the equations of ideal hydrodynamics and the Poissodeed’ the Poisson equation does not hold in the equilibrium

i o ) . ; But this may hardly be considered as an inconsistency.
equation f(_)r the gravitational potential results in the dlsper-Strictly speaking, the gravity force vanishes at any point of
sion equation !

the infinite uniform gas due to symmetry reasons, so that the
w? =22 - 02, (1)  Poisson equation becomes irrelevant. Thus, Jeans's model,

logically, is self-consistent, no matter whether or not such an
whereQ =(47Gp)*2is the Jeans gravitational frequenpys  equilibrium may exist. After all, ideal fluid do not exist ei-
the densitycs=(yT/m)*¥? is the adiabatic sound velocity,  ther.
=5/3 is theratio of specific heatsI is the gas temperature in It is worthy of mentioning that more realistic models, like
energy unitsm is the particle mass, an@ is the gravita- the expanding Newtonian world modgl], lead to the same
tional constant. As seen from E(lL), > becomes negative, Jeans instability criteriorf2). In fact, very similar results
and the instability arises when the perturbation wavelengtthave been obtained in Rgfl0] by using the Friedmann so-

N=2m/k exceeds the critical value: lution for expanding universe. Therefore, the kinetic effect of
collisions will be studied below in the simplified Jeans model
_ ™ of an infinite gas at rest in the unperturbed state. The uniform
N> N =C . (2) ; o ;
Gp gas under consideration is assumed to consist of two compo-

nents with massesn and M (m<M). Naturally, for one-

The pressure gradient tends to quench the instability. Th'ﬁomponent gas collisions of a single species cannot change

fprce c@mmates over the gr'a\'nty forcg resulting in St""b'l'za'the momentum and density perturbations and spectra with
tion with A=<<\. Thus, an originally uniform gas, due to the 0

instability, should break into clots with characteristic size of Hhs
the order of\.. It is worthy of mentioning thakglz)\C/ZTr

:C5./ (477Gp)1/2 is the Only SpecifiC CharaCteriSti(? |ength scale, Il. DISPERSION RELATION WITH COLLISIONS
which may be constructed of the parameters inherent for the
problem under consideration. The Boltzman-Vlasov equation for the distribution func-

Kinetic theory of the Jeans instability was given in Refs.tion of the light component(r,v,t) is
[3-5] using methods of plasma physics. Following Landau gf gf

[6] in Ref. [3] an initial-value problem has been solved for — 4V -Vi-Voe-—=lgy, (3)
av

where ¢ is the gravitational potential which obeys the Pois-
*Email address: strig@gmx.net son equation
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V2o =47Gp. (4) nism of absorptionpresence or absence of mass emission

. ] ~and the respective conditions for[it6]). The third term is
Here p is the full mass density of the matter. The collision the influence of gravitating scattering corresponding to Eq.
term in the kinetic equatio() describes the collisions due (g) The effective frequency is calculated for a Maxwellian
to attraction between the light masses and between light angistribution of a heavy granular gas with the saffee sim-
heavy components. In general it has to be taken in the Lamylicity) temperaturel as the light component.
dau form [11] with the “gravitational chargesGn? and The cutoff in the logarithm\ for the gravitating granular
GmM. The CharaCteI’iStiC CO||iSi0n fl’equencies can be Writterbas from physical reasons can be taken by using the impact

in the form  ypu=G’'m"nLy,/T¥* and wvmw  parameters for two gravitating scattering bodies with the re-

= G?mPM?NL/ T2, respectively, where andN are the  guced radiusa on the distancestma~ns" and ron

average number densities. The quantiligs, Lmu are the = (MmG/T)?+a2 The Debye radius plays an important role
gravitational arjalogs .of the Landau Ioggrlthm for thej, the stability of a gravitating systefisee below; but evi-
Coulomb-type interaction. On the assumptiop,<vmw:  dently does not provide the screening of the gravity field, in
which can be easily fulfilled due to the inequality<M, we  onirast with the Coulomb potential in plasma. The maximal
can neglect collisions between the light particles. The distrijnnact parameter therefore takes into account the limitation
bution function for the heavy component can be takeg/zMaxTor the scattering due to the neighbors. The minimal impact
wellian, because the inequalityyy =G"M™*NLyw/T parameter is connected with separation of scattering states
>(). N ] ) and the falling down on the center.

For our purposes and conditions under consideration We Tne kinetic and Poisson equatiot® and (4) are to be

can use the simplified collision integri, in the form sug-  |inearized taking into account that linearization of the colli-
gested by Bhatnagar, Gross, and Krg@R] (and applied for g, integral(5) yields

Coulomb collisions in plasma ifiL3]):
fo5p)

IcoI:_V(f_foffd3V). (5) 5|c0|:—v<5f—?

8
Heref, andny=p,/m are, respectively, the distribution func- as the density perturbation is expressed by means of the dis-
tion [[fdv=1 in contrast with the distributiof(r ,v,t) nor-  tribution function perturbation: Sp=m/ &f(r,v,t) d 3 v.
malized to the inhomogeneous denkiand the number den- Then the standard procedure of linearization by using
sity (np=n) at the initial moment=0: f(r,v,t=0)=nyfy(V). Laplace transformation results in the dispersion relation

In contrast to so-called #approximation” (see, e.g., Eq. 5 . )

(6.7.1) in Ref. [14]), which cannot conserve the number of OF [ [k-dfo(WIdV +ivkTH(v)/) ]d3v: 1 9)
particles, Eq.(5) is compatible with the required particle k2 w+iv-Kk-v '
conservation law;l.,d 2 v=0. Using a similarity between

the Coulomb and Newton gravity laws we can take the efWith »=0 this equation, naturally, reduces to K§.27) in
fective collision frequencyv= v, between the light and Binney and Tremaine[7]. Thus, collisions in a self-
heavy masses for a self-gravitating system as follows: gravitating system, in addition to the trivial replacemant

— w+iv, result in a substantigif k is not too smajl modi-

[5 222 — . L ) .
_ 427G MmN ©) fication of the spectrum. This modification is associated with
V= 3uv 3 the form (5) (of the collision integrgl required in order to

- secure the particle conservation law.
Here vr=+vT/m is the thermal velocity of the granular gas  Let us choose the axis alongk and assume that the
with the massn, A =L,y is the gravitational analog of the initial velocity distribution is Maxwellian
generalized Coulomb logarithifl5], and u=m is the re-
duced mass for the components considered. Equéiote- 1 v?
scribes the elastic gravitational collisions. The processes of fo(v) = (Zw)TzuseXp<_ ?)
inelastic gravitational collisions can be taken into account by T T
generalization of the collision integral. For example, for theDenoteux=u and integrate in Eq(9) over v, and v, We
case of the additional inelastic process, when small massggyive at the dispersion relation in the fO”O\X/ing form:
can fall on heavy ones, instead mflescribing by Eq(6) we

(10

have Q2 [ [ dfy(u kfo(u du
B 0 ( o0l )) TR
8\‘““27TaZNUT GM G2M2 k —% dU Q (w +lv-— ku)
v= + > 2+ > 4 (7)
3 2avT  2a‘vt where

Herea is the reduced radius of the spherical masses. The first )

two terms in Eq(7) describe the mechanism of absorption fo(U) :f ff (v)do.dv, = _Lexp<— ”_> (12)
(falling on the centerof the light particles by the heavy ones 0 0 e V27T v%

in the model similar to Ref416,17. The values of the con-

stantsA andB (order of unitg depend on the specific mecha- and [ fy(u)du=1.
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Im(®g) /9
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IB) ~-i2mBexp(-BA2), with|g > 1,

Im(B)| > |[Re(B)], Im(B) < 0. (17)

Ill. ANALYSIS OF THE DISPERSION RELATION

Let us consider an unstable mode, (@) >0, for the case

|w+iv|>kvy, thatisg>1. (18)
In this case we are able to integrate in EtB) along the real

axis, as there are no singularities®* 8. We expand(1

FIG. 1. Dimensionless increment of the Jeans instability—x/g)~1in Eq. (13) into a power series, taking into account

Im(wg)/Q for the value of wave vectok=0 plotted against the
relation of the collision frequency to the value of the increment
QO =\47Gp, for v=0.

Equation(11) reduces to Eq(13) in Landau[6] with v
=0 if Q2 is replaced by wé (wg Is the electron Langmuir
frequency. By using expressioril?2) one obtains(Figs. 1
and 2 another form of the dispersion relatighl):

02 F exp—- 12 (x—ivkurlQ) |

1 + ”_
V2mr(kv)? B—Xx

01

(13)

wherex=u/vy, B=(w+iv)/kuT.
Let us denote
B
JB) ==

V2md -

* exp(— x2/2
Xp— X )dx.
B—X

Then, the dispersion relatiqid3) becomes

(14)

B 2 iv(kvp)?
(kvp)? Q% (w+iv)

The functionJ(B) has the following asymptotic behavior
(see, e.g., Ref18)):

3B ~ —i\@s, with |6l <1,

1 {1—3(,3)+ .J(,B)] =0. (15

(16)
and

Im() / Q
A

Im(wg) /Q

1 k/kp

FIG. 2. Dimensionless increment of the Jeans instability

Im(wg)/ Q) plotted against the relation of the wave veckoto the
Debye wave vectok, =D™1=Q/v+, wherevr is the thermal veloc-
ity of the small gravitating masses.

symmetry and antisymmetry of the integrand. One obtains

QZ
(w+iv)?

3(kvQ)? ~ iv B iv(kvp)? _
(w+iv)? (w+iv)d®
(19

With »=0 this is a quadratic equation faf with solution
[compatible with the assumptiqid8)]:

w+iv

w?=3(kvp)? - O?, (20)
which coincides with the Jeans dispersion equatiby if
3v% is replaced byc=yv3.

It is easy to take collisions into account in the limit of
long wavelengthsk— 0. Then, using Eq(19) one obtains
for an unstable modgm (w)>0]

w(k=0)= wO:'E(\s'V2+4Q2—V). (21)
We arrive at the conclusion that the long-wavelengkh
—0) mode remains unstable despite collisions which, natu-
rally, diminish the instability growth rate.

An approximate solution of the dispersion relatici®)
may be obtained by means of perturbation theory using the
condition (18). Denote w+iv=r=7y+7, |7|<|m|, where
To=wptiv, and wg is given by expression2l). Neglecting
terms proportional tgg? we find from Eq.(19) that =, satis-
fies the following equation:

1+ Q—z - v 0 (22
7'(2) 70 ’
and, hence,
T (kop)2(3Q 19— ivI€Y) . 23

QO 202+ 17— ivw,

From Egs(21) and(23) we arrive(after some algebjat the
following expression fow=wy+ 7:

Ciol S 3k’ (_ﬂ
w—IQ|: 1+402 20 , (24

202 “\a
where
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(1){1+11+21:ﬂfyl
“la 4027 402
o 2 v (25)
ViA+40%+y 3Q ]

with the asymptotical behaviorp—1 with »/Q—0; ¢
=20/3v—0 with »/Q>1.
With »=0, naturally, one obtains

. 3(kv7)?
:'Q<1_ 2(va2 )

(26)

which corresponds to the Jeans kinetic equati@f) if
(kvp)?2< Q2.
As ¢=20/3v for v/Q2>1 one obtains from Eq24)

0= iﬂ(g - —(k”T)2>.

v Qv @7

Equation(27) shows that Imw)>0. Thus, we are able to

confirm our conclusion obtained above for a special dase
=0: although collisions, naturally, diminish the instability
growth rate, collision damping cannot quench the Jeans in
stability. This conclusion is obviously associated with the
If ther approximation

[which, in contrast to Eq5), does not conserve the number
of particle§ were used, then we would arrive at the linear-

form (5) of the collision integral.

ized kinetic equation with a trivial replacemeat— w+iv
[this fact is also seen from the dispersion relaii@)j. In this

PHYSICAL REVIEW E 69, 066403(2004)

ko 7T[l (kD)“]| 1 2al) (32

which holds both withkD<1 [when Im(w) >0 and, hence,
an instability arisesand with kD>1, when Imw)<0. If

v/ Q<1 the conditionkD-1|<1 has to be fulfilled in order
to satisfy the inequality28). Therefore, we pukD=1 in
order to write the expression in the last brackets in (B88)
in a simplified form. Thus, wittkkD>1, »/(}<1 a damping
occurs(the term with collisions is a small correctipror-
mally, this damping forv=0 is reminiscent of collisionless
Landau(1946 damping in plasma. But the mechanism of the
damping is different. Landau damping in a plasma is associ-
ated with the inverse Cherenkov effect. This is not so in a
gravitating system with Re)/k=0, where the damping
arises withkD=1. We suggest the following explanation. A
small sporadic displacement of a particle violates the balance
of forces in the Jeans model of an infinite uniform self-
gravitating gas at rest. As a result, the particle is to continue
its motion in the same direction. This is the Jeans instability.
Chaotic thermal motion tends to destroy this picture, and
hence, to suppress the instability.

In order to satisfy the inequality28) with »/Q>1 the

condition kD=[v#/2 v/Q+\2/7 Q/v]>1 is required.

®Then Eq.(29) leads to a strongly damped solution:

imw) __»_2 _JE1>
Q_Qw(kD 20)°

According to expressioli31), ¥'=0 with kD=1, so that

(33

case, withkvr<Q) perturbations should be proportional to »=0. It happens that this result does not depend on our as-

exp(—-iwt) =exd (-

v)t], so that withv= () the Jeans insta-

sumption (28), which near the thresholdv=0 becomes

bility would be suppressed by collisions. Therefore the »/Q<1 (askvr=Q with kD=1). Indeed, withkD=1, w
approximation cannot even give a qualitatively correct de=0 is theexactsolution of the dispersion relatioii5) with

scription for the Jeans long-wavelength mode.
Next we consider the case

|o+iv]

18| = <1. (28)

kvt

In this case, we substitute the asymptotit§) into the
dispersion relatiorg15), which yields

Imle) _ \/qu(kD ﬁ)
kg Vo Q)

LA
Q

Re(w) =0, (29)
where

D= (30)

any value of the collision frequency.

It means we can find thk dependence for the spectrum
near the valuew=0 on the basis of the general dispersion
relation (15) by expansion near the poiat=0. In this way,
with »/Q1<1 one obtains again the same expresgi@?),
whereas for frequent collisions/)>1 by using the addi-
tional assumption:

1> 1eXp< v ) > —=—(1-Kk2D?), (34)
Q 202) " \2x
we arrive at the result:
Im(w) , e
Rew)=0,—— 0 27(1-k°D 2)exp< 5 QZ> (35)

Inequalities(34) are easily fulfilled withkD=1 andv> ().

is an analog of the Debye radius in a gravitating system, antl the pointkD=1 the unstable regime transforms into a

(31

(kD)2 _i>
=1 (kD)+\/;Q(kD =

Of course, the Debye-Jeans radiDsis not associated
with screeningas in the case of plasmat is a characteristic

scale of mass separation due to thermal motion. WitQ
<1 Eqg.(29) reduces to

stable one.

Thus, we arrive at the following conclusion: although col-
lisions result in a substantial modification of the spectrum
diminishing the instability growth rate, they do not affect the
Jeans instability criteriorkD<<1. The thresholdv=0 (sepa-
rating stable and unstable moglesrresponds t&D=1 with
any value ofv.

Now we consider a case

066403-4
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|w+iv]
A=,
Ut

Im(B)| > |Re(B)], Im(B) <O.

(36)

For the asymptotic§36) the general dispersion relation

PHYSICAL REVIEW EG69, 066403(2004)

riodic unstable mode was found. According to E2fl), with
v> (), the instability growth rate is Itw)=Q 2/v, whereas
with v<<() it reduces to the value ltw)=Q given by the
Jeans equatio(l).

With small but finitek values, the mode of oscillation

(15) possesses a few solutions. At first we consider the soluemains aperiodic: Re)=0, the instability growth rate
tion with Re(8)=Re(w)/ (kv7) =0. In this case the dispersion [given by Eq.(24)] with »> () strongly depends on the col-

relation(15) reduces to
2
(||m(ﬁ)| + kik2D2>exp<m) - i#(kZDZ ~1).
UT 2 N2
(37)

It is obvious that the solution of E¢37) exists only ifkD
>1. If, in addition, |Im(B)|> v/kvt one obtains

| - kD)?
Re(w) =0, iw) =-+2kD in' f) -=. (39
Vv2mr Q)

In fact, the last term on the right-hand side of E88) is
small and can be omitted.
If [Im(B)|< vk?D?/kv+=vkvt/Q? we find from Eq.(37):

kUT
—
\N2my

Re(w) =0, Im(w)=- 2kt In( ) (39)

This damping mode exists
< 12(kD)*/ (kvy)2.

Finally, for RgB) # 0 the general dispersion E.5) also
has the solutions withim(g)| > |Re(g)|. In the case under

only with (kvi/v)

consideration Eq37) for Im(B8) happens to be also valid, as

it follows from the general dispersiofl5). The small(in
comparison with the imaginary pareal part R€8) is deter-
mined from the expansion of E¢L5):

27Ss
im(B)|’

wheres<|Im(g)|? is an integer.

Re(p) = (40)

IV. CONCLUSION

lision frequencyr. Collision damping(although diminishing

the growth ratg cannot quench the Jeans instability. This
conclusion is associated with the for¢d) of the collision
integral. If the so-called approximationjwhich, in contrast

to Eg. (5), does not conserve the number of partithegre
used, perturbations would be proportional to [gp-v)t],

so that withv= () the Jeans instability would be suppressed
by collisions. It is necessary to mention that in the recent
paper[19] the Jeans instability for the gravitating dusty plas-
mas with charged and neutral grains has been considered in
framework of hydrodynamical approximation. It was shown
that collisions between neutral and charged grains cannot
totally quench the Jeans instability for small valuek@ind
propagating modes in the region of existence are strongly
damped. Our results on the basis of kinetic consideration for
two-component system of neutral gravitating grains corrobo-
rate these statements, although the kinetic consideration
leads of cause to some different from the hydrodynamic con-
crete expressions and dependencies for the increments and
decrements of the modes.

The threshold w=0 (separating stable and unstable
modeg$ was found not to depend on the collision frequency
v. It is determined only by the Debye-Jeans radiu®f a
gravitating systemw=0 if kD=1 with any v value. Thus, we
arrived at the conclusion that collisions do not affect the
Jeans instability criterionkD<1. However, even in the
neighborhood of the threshold=0 (i.e., kD~ 1) the spec-
trum of oscillations strongly depends on the collision fre-
quencyw: according to Eq(35), this dependence is exponen-
tial. Propagatingrather than aperiodjomodes Réw)/k+# 0
are also foundsee Eqs(37)—(40)]. These modes, however,
are strongly damped aRe(w)|<|Im(w)|.
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