
Kinetic theory of Jeans instability

S. A. Trigger,1,* A. I. Ershkovich,2 G. J. F. van Heijst,3 and P. P. J. M. Schram3
1Joint Institute for High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia

2Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
3Eindhoven University of Technology, P.O. Box 513, MB 5600 Eindhoven, The Netherlands

(Received 17 September 2003; published 2 June 2004)

Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The
initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral
conserving the number of particles, is solved. Dispersion relation is obtained and analyzed. New modes are
found. Collisions are shown not to affect the Jeans instability criterion. Although the instability growth rate
diminishes, the collisions they cannot quench the instability. However, the oscillation spectrum is modified
significantly: even in the neighborhood of the threshold frequencyv=0 (separating stable and unstable modes)
the spectrum of oscillations can strongly depend on the collision frequency. Propagating(rather than aperiodic)
modes are also found. These modes, however, are strongly damped.
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I. INTRODUCTION

In his letter to Richard Bentley, Isaac Newton(1692) first
suggested that self-gravity in infinite universe would lead to
the observed mass distribution[1]. Jeans(1902) gave the
first quantitative description of fragmentation of matter due
to self-gravity[2]. He has shown that a self-gravitating infi-
nite uniform gas at rest should be unstable against small
perturbations proportional to expfisk ·r −vtdg. Linearization
of the equations of ideal hydrodynamics and the Poisson
equation for the gravitational potential results in the disper-
sion equation

v2 = cs
2k2 − V2, s1d

whereV=s4pGrd1/2 is the Jeans gravitational frequency,r is
the density,cs=sgT/md1/2 is the adiabatic sound velocity,g
=5/3 is theratio of specific heats,T is the gas temperature in
energy units,m is the particle mass, andG is the gravita-
tional constant. As seen from Eq.(1), v2 becomes negative,
and the instability arises when the perturbation wavelength
l=2p /k exceeds the critical value:

l . lc = csÎ p

Gr
. s2d

The pressure gradient tends to quench the instability. This
force dominates over the gravity force resulting in stabiliza-
tion with lølc. Thus, an originally uniform gas, due to the
instability, should break into clots with characteristic size of
the order oflc. It is worthy of mentioning thatkc

−1=lc/2p
=cs/ s4pGrd1/2 is the only specific characteristic length scale,
which may be constructed of the parameters inherent for the
problem under consideration.

Kinetic theory of the Jeans instability was given in Refs.
[3–5] using methods of plasma physics. Following Landau
[6] in Ref. [3] an initial-value problem has been solved for

the collisionless Boltzmann-Vlasov equation by using the
Landau bypass rule. Kinetic treatment of the Jeans instability
is discussed in detail in Ref.[7]. The gravitating charged
collisionless dust, in which the Jeans instability arises, was
recently considered in Ref.[8].

It is generally believed(e.g., Ref. [7]) that the Jeans
model suffers from basic inconsistency as the equilibrium
state in this model does not obey the Poisson equation. In-
deed, the Poisson equation does not hold in the equilibrium
but this may hardly be considered as an inconsistency.
Strictly speaking, the gravity force vanishes at any point of
the infinite uniform gas due to symmetry reasons, so that the
Poisson equation becomes irrelevant. Thus, Jeans’s model,
logically, is self-consistent, no matter whether or not such an
equilibrium may exist. After all, ideal fluid do not exist ei-
ther.

It is worthy of mentioning that more realistic models, like
the expanding Newtonian world model[9], lead to the same
Jeans instability criterion(2). In fact, very similar results
have been obtained in Ref.[10] by using the Friedmann so-
lution for expanding universe. Therefore, the kinetic effect of
collisions will be studied below in the simplified Jeans model
of an infinite gas at rest in the unperturbed state. The uniform
gas under consideration is assumed to consist of two compo-
nents with massesm and M sm!Md. Naturally, for one-
component gas collisions of a single species cannot change
the momentum and density perturbations and spectra with
k→0.

II. DISPERSION RELATION WITH COLLISIONS

The Boltzman-Vlasov equation for the distribution func-
tion of the light componentfsr ,v ,td is

] f

] t
+ v · = f − = w ·

] f

] v
= Icol, s3d

wherew is the gravitational potential which obeys the Pois-
son equation*Email address: strig@gmx.net

PHYSICAL REVIEW E 69, 066403(2004)

1539-3755/2004/69(6)/066403(6)/$22.50 ©2004 The American Physical Society69 066403-1



¹2w = 4pGr. s4d

Here r is the full mass density of the matter. The collision
term in the kinetic equation(3) describes the collisions due
to attraction between the light masses and between light and
heavy components. In general it has to be taken in the Lan-
dau form [11] with the “gravitational charges”Gm2 and
GmM. The characteristic collision frequencies can be written
in the form nmm.G2m7/2nLmm/T3/2 and nmM
.G2m3/2M2NLmM/T3/2, respectively, wheren andN are the
average number densities. The quantitiesLmm, LmM are the
gravitational analogs of the Landau logarithm for the
Coulomb-type interaction. On the assumptionnmm!nmM,
which can be easily fulfilled due to the inequalitym!M, we
can neglect collisions between the light particles. The distri-
bution function for the heavy component can be taken Max-
wellian, because the inequalitynMM .G2M7/2NLMM /T3/2

@V.
For our purposes and conditions under consideration we

can use the simplified collision integralIcol in the form sug-
gested by Bhatnagar, Gross, and Krook[12] (and applied for
Coulomb collisions in plasma in[13]):

Icol = − nsf − f0E fd3vd. s5d

Here f0 andn0=r0/m are, respectively, the distribution func-
tion [ef0dv=1 in contrast with the distributionfsr ,v ,td nor-
malized to the inhomogeneous density] and the number den-
sity sn0;nd at the initial momentt=0: fsr ,v ,t=0d=n0f0svd.
In contrast to so-called “t-approximation” (see, e.g., Eq.
(6.7.1) in Ref. [14]), which cannot conserve the number of
particles, Eq.(5) is compatible with the required particle
conservation law:eIcold

3 v=0. Using a similarity between
the Coulomb and Newton gravity laws we can take the ef-
fective collision frequencyn;nmM between the light and
heavy masses for a self-gravitating system as follows:

n =
4Î2pG2M2m2N

3m2v T
3 L. s6d

Here vT=ÎT/m is the thermal velocity of the granular gas
with the massm, L;LmM is the gravitational analog of the
generalized Coulomb logarithm[15], and m.m is the re-
duced mass for the components considered. Equation(6) de-
scribes the elastic gravitational collisions. The processes of
inelastic gravitational collisions can be taken into account by
generalization of the collision integral. For example, for the
case of the additional inelastic process, when small masses
can fall on heavy ones, instead ofn describing by Eq.(6) we
have

n =
8Î2pa2NvT

3
FA + B

GM

2a2vT
2 +

G2M2

2a2vT
4 LG . s7d

Herea is the reduced radius of the spherical masses. The first
two terms in Eq.(7) describe the mechanism of absorption
(falling on the center) of the light particles by the heavy ones
in the model similar to Refs.[16,17]. The values of the con-
stantsA andB (order of units) depend on the specific mecha-

nism of absorption(presence or absence of mass emission
and the respective conditions for it[16]). The third term is
the influence of gravitating scattering corresponding to Eq.
(6). The effective frequency is calculated for a Maxwellian
distribution of a heavy granular gas with the same(for sim-
plicity) temperatureT as the light component.

The cutoff in the logarithmL for the gravitating granular
gas from physical reasons can be taken by using the impact
parameters for two gravitating scattering bodies with the re-
duced radiusa on the distancesrmax<n0

−1/3 and rmin

=ÎsMmG/Td2+a2. The Debye radius plays an important role
in the stability of a gravitating system(see below), but evi-
dently does not provide the screening of the gravity field, in
contrast with the Coulomb potential in plasma. The maximal
impact parameter therefore takes into account the limitation
for the scattering due to the neighbors. The minimal impact
parameter is connected with separation of scattering states
and the falling down on the center.

The kinetic and Poisson equations(3) and (4) are to be
linearized taking into account that linearization of the colli-
sion integral(5) yields

dIcol = − nSdf −
f0dr

m
D , s8d

as the density perturbation is expressed by means of the dis-
tribution function perturbation: dr=medfsr ,v ,td d 3 v.
Then the standard procedure of linearization by using
Laplace transformation results in the dispersion relation

V2

k2 E fk · ] f0svd/] v + ink2f0svd/V2g
v + in − k ·v

d3v = 1. s9d

With n=0 this equation, naturally, reduces to Eq.(5.27) in
Binney and Tremaine[7]. Thus, collisions in a self-
gravitating system, in addition to the trivial replacementv
→v+ in, result in a substantial(if k is not too small) modi-
fication of the spectrum. This modification is associated with
the form (5) (of the collision integral) required in order to
secure the particle conservation law.

Let us choose thex axis alongk and assume that the
initial velocity distribution is Maxwellian

f0svd =
1

s2pd3/2vT
3 expS−

v2

2vT
2 D . s10d

Denotevx=u and integrate in Eq.(9) over vy and vz. We
arrive at the dispersion relation in the following form:

V2

k
E

−`

` Sdf0sud
du

+ i
nkf0sud

V2 D du

sv + in − kud
= 1, s11d

where

f0sud =E E f0svddvydvz =
1

Î2pvT

expS−
u2

2vT
2D s12d

ande−`
` f0suddu=1.
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Equation(11) reduces to Eq.(13) in Landau[6] with n
=0 if V2 is replaced by −v0

2 (v0 is the electron Langmuir
frequency). By using expression(12) one obtains(Figs. 1
and 2) another form of the dispersion relation(11):

1 +
V2

Î2pskvTd2E
−`

` exps− x2/2dsx − inkvT/V2d
b − x

dx= 0,

s13d

wherex=u/vT, b=sv+ ind /kvT.
Let us denote

Jsbd =
b

Î2p
E

−`

` exps− x2/2d
b − x

dx. s14d

Then, the dispersion relation(13) becomes

1 −
V2

skvTd2F1 − Jsbd +
inskvTd2

V2sv + ind
JsbdG = 0. s15d

The function Jsbd has the following asymptotic behavior
(see, e.g., Ref.[18]):

Jsbd < − iÎp

2
b, with ubu ! 1, s16d

and

Jsbd < − iÎ2pb exp s− b2/2d, withubu @ 1,

uImsbdu @ uResbdu, Imsbd , 0. s17d

III. ANALYSIS OF THE DISPERSION RELATION

Let us consider an unstable mode, Imsvd.0, for the case

uv + inu @ kvT, that isb @ 1. s18d

In this case we are able to integrate in Eq.(13) along the real
axis, as there are no singularities:xÞb. We expands1
−x/bd−1 in Eq. (13) into a power series, taking into account
symmetry and antisymmetry of the integrand. One obtains

1 +
V2

sv + ind2 +
3skvTVd2

sv + ind4 −
in

v + in
−

inskvTd2

sv + ind3 = 0.

s19d

With n=0 this is a quadratic equation forv2 with solution
[compatible with the assumption(18)]:

v2 = 3skvTd2 − V2, s20d

which coincides with the Jeans dispersion equation(1), if
3vT

2 is replaced bycs
2=gvT

2.
It is easy to take collisions into account in the limit of

long wavelengths,k→0. Then, using Eq.(19) one obtains
for an unstable modefIm svd.0g

vsk = 0d ; v0 =
i

2
sÎn2 + 4V2 − nd. s21d

We arrive at the conclusion that the long-wavelengthsk
→0d mode remains unstable despite collisions which, natu-
rally, diminish the instability growth rate.

An approximate solution of the dispersion relation(19)
may be obtained by means of perturbation theory using the
condition (18). Denote v+ in=t=t0+t1, ut1u! ut0u, where
t0=v0+ in, and v0 is given by expression(21). Neglecting
terms proportional tob2 we find from Eq.(19) that t0 satis-
fies the following equation:

1 +
V2

t0
2 −

in

t0
= 0, s22d

and, hence,

t1

V
=

skvTd2s3V/t0 − in/Vd
2V2 + n2 − inv0

. s23d

From Eqs.(21) and(23) we arrive(after some algebra) at the
following expression forv=v0+t1:

v = iVFÎ1 +
n2

4V2 −
n

2V
−

3sk vTd2

2V2 wS n

V
DG , s24d

where

FIG. 1. Dimensionless increment of the Jeans instability
Imsv0d /V for the value of wave vectork=0 plotted against the
relation of the collision frequencyn to the value of the increment
V;Î4pGr0 for n=0.

FIG. 2. Dimensionless increment of the Jeans instability
Imsv0d /V plotted against the relation of the wave vectork to the
Debye wave vectorkD;D−1=V /vT, wherevT is the thermal veloc-
ity of the small gravitating masses.
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w S n

V
D = F1 +

n2

4V2 +
nÎn2 + 4V2

4V2 G−1

3F 2V

În2 + 4V2 + n
+

n

3V
G , s25d

with the asymptotical behavior:w→1 with n /V→0; w
=2V /3n→0 with n /V@1.

With n=0, naturally, one obtains

v = iVS1 −
3skvTd2

2V2 D , s26d

which corresponds to the Jeans kinetic equation(20) if
skvTd2!V2.

As w=2V /3n for n /V@1 one obtains from Eq.(24)

v = iVSV

n
−

skvTd2

Vn
D . s27d

Equation(27) shows that Imsvd.0. Thus, we are able to
confirm our conclusion obtained above for a special casek
=0: although collisions, naturally, diminish the instability
growth rate, collision damping cannot quench the Jeans in-
stability. This conclusion is obviously associated with the
form (5) of the collision integral. If thet approximation
[which, in contrast to Eq.(5), does not conserve the number
of particles] were used, then we would arrive at the linear-
ized kinetic equation with a trivial replacementv→v+ in
[this fact is also seen from the dispersion relation(9)]. In this
case, withkvT!V perturbations should be proportional to
exps−ivtd=expfsV−ndtg, so that withnùV the Jeans insta-
bility would be suppressed by collisions. Therefore thet
approximation cannot even give a qualitatively correct de-
scription for the Jeans long-wavelength mode.

Next we consider the case

ubu =
uv + inu

kvT
! 1. s28d

In this case, we substitute the asymptotics(16) into the
dispersion relation(15), which yields

Resvd = 0,
Imsvd
kvT

=Î 2

p
CSkD,

n

V
D , s29d

where

D =
vT

V
s30d

is an analog of the Debye radius in a gravitating system, and

C = 1 − skDd2 +Îp

2

n

V
SkD −

1

kD
D . s31d

Of course, the Debye-Jeans radiusD is not associated
with screening(as in the case of plasma); it is a characteristic
scale of mass separation due to thermal motion. Withn /V
!1 Eq. (29) reduces to

Im svd
kvT

=Î 2

p
f1 − skDd2gS1 −Îp

2

n

V
D , s32d

which holds both withkD,1 [when Imsvd.0 and, hence,
an instability arises] and with kD.1, when Imsvd,0. If
n /V!1 the conditionukD−1u!1 has to be fulfilled in order
to satisfy the inequality(28). Therefore, we putkD=1 in
order to write the expression in the last brackets in Eq.(32)
in a simplified form. Thus, withkD.1, n /V!1 a damping
occurs(the term with collisions is a small correction). For-
mally, this damping forn=0 is reminiscent of collisionless
Landau(1946) damping in plasma. But the mechanism of the
damping is different. Landau damping in a plasma is associ-
ated with the inverse Cherenkov effect. This is not so in a
gravitating system with Resvd /k=0, where the damping
arises withkDù1. We suggest the following explanation. A
small sporadic displacement of a particle violates the balance
of forces in the Jeans model of an infinite uniform self-
gravitating gas at rest. As a result, the particle is to continue
its motion in the same direction. This is the Jeans instability.
Chaotic thermal motion tends to destroy this picture, and
hence, to suppress the instability.

In order to satisfy the inequality(28) with n /V@1 the
condition kD.fÎp /2 n /V+Î2/p V /ng@1 is required.
Then Eq.(29) leads to a strongly damped solution:

Imsvd
V

= −
n

V
−

2

p
SkD −Îp

2

n

V
D . s33d

According to expression(31), C=0 with kD=1, so that
v=0. It happens that this result does not depend on our as-
sumption (28), which near the thresholdv=0 becomes
n /V!1 (as kvT.V with kD.1). Indeed, withkD=1, v
=0 is theexactsolution of the dispersion relation(15) with
any value of the collision frequencyn.

It means we can find thek dependence for the spectrum
near the valuev=0 on the basis of the general dispersion
relation (15) by expansion near the pointv=0. In this way,
with n /V!1 one obtains again the same expression(32),
whereas for frequent collisionsn /V@1 by using the addi-
tional assumption:

1 @
n

V
expS−

n2

2V2D @
1

Î2p
s1 − k2D2d, s34d

we arrive at the result:

Resvd = 0,
Imsvd

V
= Î2ps1 − k2D2dexpS n2

2V2D . s35d

Inequalities(34) are easily fulfilled withkD.1 andn@V.
In the point kD=1 the unstable regime transforms into a
stable one.

Thus, we arrive at the following conclusion: although col-
lisions result in a substantial modification of the spectrum
diminishing the instability growth rate, they do not affect the
Jeans instability criterion:kD,1. The thresholdv=0 (sepa-
rating stable and unstable modes) corresponds tokD=1 with
any value ofn.

Now we consider a case
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ubu =
uv + inu

kvT
@ 1, uImsbdu @ uResbdu, Imsbd , 0.

s36d

For the asymptotics(36) the general dispersion relation
(15) possesses a few solutions. At first we consider the solu-
tion with Resbd;Resvd / skvTd=0. In this case the dispersion
relation (15) reduces to

SuImsbdu +
n

kvT
k2D2DexpS fImsbdg2

2
D =

1
Î2p

sk2D2 − 1d.

s37d

It is obvious that the solution of Eq.(37) exists only if kD
@1. If, in addition, uImsbdu@n /kvT one obtains

Resvd = 0,
Imsvd

V
= − Î2kDÎln

skDd2

Î2p
−

n

V
. s38d

In fact, the last term on the right-hand side of Eq.(38) is
small and can be omitted.

If uImsbdu!nk2D2/kvT=nkvT/V2 we find from Eq.(37):

Resvd ; 0, Imsvd = − Î2kvTÎlnS kvT

Î2pn
D . s39d

This damping mode exists only with lnskvT/nd
!n2skDd4/ skvTd2.

Finally, for ResbdÞ0 the general dispersion Eq.(15) also
has the solutions withuImsbd u @ uResbdu. In the case under
consideration Eq.(37) for Imsbd happens to be also valid, as
it follows from the general dispersion(15). The small(in
comparison with the imaginary part) real part Resbd is deter-
mined from the expansion of Eq.(15):

Resbd =
2ps

uImsbdu
, s40d

wheres! uImsbdu2 is an integer.

IV. CONCLUSION

The kinetic treatment of the Jeans instability shows that
collisions may result in substantial modification of the oscil-
lation spectrum. In the long-wavelength limit,k →0, an ape-

riodic unstable mode was found. According to Eq.(21), with
n@V, the instability growth rate is Imsvd=V 2/n, whereas
with n!V it reduces to the value Imsvd=V given by the
Jeans equation(1).

With small but finitek values, the mode of oscillation
remains aperiodic: Resvd=0, the instability growth rate
[given by Eq.(24)] with n@V strongly depends on the col-
lision frequencyn. Collision damping(although diminishing
the growth rate) cannot quench the Jeans instability. This
conclusion is associated with the form(5) of the collision
integral. If the so-calledt approximation[which, in contrast
to Eq. (5), does not conserve the number of particles] were
used, perturbations would be proportional to expfsV−ndtg,
so that withnùV the Jeans instability would be suppressed
by collisions. It is necessary to mention that in the recent
paper[19] the Jeans instability for the gravitating dusty plas-
mas with charged and neutral grains has been considered in
framework of hydrodynamical approximation. It was shown
that collisions between neutral and charged grains cannot
totally quench the Jeans instability for small values ofk and
propagating modes in the region of existence are strongly
damped. Our results on the basis of kinetic consideration for
two-component system of neutral gravitating grains corrobo-
rate these statements, although the kinetic consideration
leads of cause to some different from the hydrodynamic con-
crete expressions and dependencies for the increments and
decrements of the modes.

The threshold v=0 (separating stable and unstable
modes) was found not to depend on the collision frequency
n. It is determined only by the Debye-Jeans radiusD of a
gravitating system:v=0 if kD=1 with anyn value. Thus, we
arrived at the conclusion that collisions do not affect the
Jeans instability criterion:kD,1. However, even in the
neighborhood of the thresholdv=0 (i.e., kD,1) the spec-
trum of oscillations strongly depends on the collision fre-
quencyn: according to Eq.(35), this dependence is exponen-
tial. Propagating(rather than aperiodic) modes Resvd /kÞ0
are also found[see Eqs.(37)–(40)]. These modes, however,
are strongly damped asuResvdu!uImsvdu.
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